Exercise 4

Describe the geometric meaning of the following mappings in cylindrical coordinates:
(a) $(r, \theta, z) \mapsto(r, \theta,-z)$
(b) $(r, \theta, z) \mapsto(r, \theta+\pi,-z)$
(c) $(r, \theta, z) \mapsto(-r, \theta-\pi / 4, z)$

Solution

Part (a)
This mapping reflects the point across the $x y$-plane.
Part (b)
This mapping rotates the point 180° around the z-axis (as indicated by the right-hand corkscrew rule) and then reflects it across the $x y$-plane. In other words, it reflects the point across the origin.

Part (c)

This mapping rotates the point 135° around the z-axis (as indicated by the right-hand corkscrew rule). Note that changing r to $-r$ is effectively the same as adding π to θ. In total, the change in θ is $\pi-\pi / 4=3 \pi / 4=135^{\circ}$.

